
平成25年度第2回 東京都健康安全研究センター環境保健衛生講習会 放射線の測定値の見方、考え方

テーマ: 困難な放射線の問題を一緒に考えてみませんか

今日の話題: 疑問点を考えながら見ていきましょう

- 放射線の歴史と身の回りの放射線
- 線量計・サーベイメータ
- 食品の放射線安全の基準とモニタリングの実際
- 被ばく線量評価
- ・ 放射線による健康影響と防護体系
- ・ リスクのとらえ方

日 時:平成26年2月5日(水曜日) 場 所:女性総合センター (立川市)

放射線・放射能の基礎知識 身の回りの放射線


放射線の発見者たち

1895年12月22日に撮影された ベルタ・レントゲンの手のX線写真

1895年;ドイツのレントゲン博士 放電管の実験から写真乾板を感光させるX線を発見 ここから物理学上の大発見がはじまった

1896年

フランスのベックレル博士

- ・ウラン化合物を机に入れておいたが、偶然写真乾板が感光することを発見した。
- ・ウラン化合物が放射線を出していることを発見:放射能の発見

- **◆フランスの<u>キュリー</u>夫妻**
- *1898年、ウランの鉱物からポロニウムとラジウムを 化学的に抽出。強い放射能をもつラジウムの発見

放射線障害の歴史

1895年 レントゲンによるX線の発見 (1901年最初のノーベル物理学賞受賞)

1896年 ベクレルによるウランの放射能の発見

Grubbe (米)手に皮膚炎

Edison (米)眼痛

Daniel (米)脱毛症

Marcuse (米)脱毛症

1898年 キューリー夫妻によるラジウムの発見

1902年 X線による慢性潰瘍による発がん

1903年 Heineke X線照射により末梢血中白血球が著減することを報告

1904年 ラドンによる肺障害の報告(チェコスロバキア)

1914年~ 夜光塗料工場でのラジウム中毒(米)

1915年 "X線技術者の防護に関する勧告"(英)

1925年 第1回国際放射線会議(ロンドン)

1927年 Muller 放射線による突然変異増加を観察

1928年 国際X線ラジウム防護委員会

1950年 国際放射線防護委員会(ICRP)

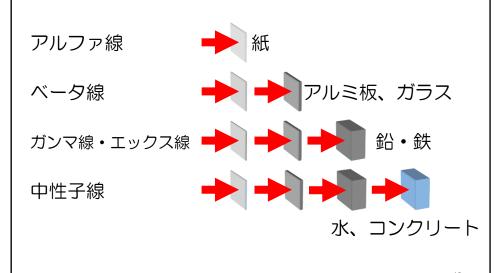
ロルフ・マキシミリアン・シーベルト(Rolf Maximilian Sievert, 1896年5月6日 - 1966年10月3日) スウェーデンの物理学者。

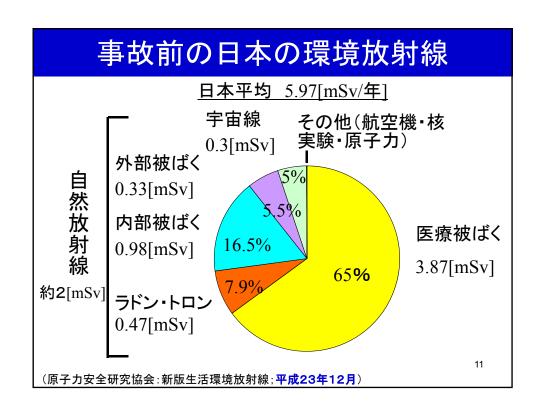
放射線が人体に与える影響 についての研究で知られ、特 に放射線防護について大き な功績を残した。

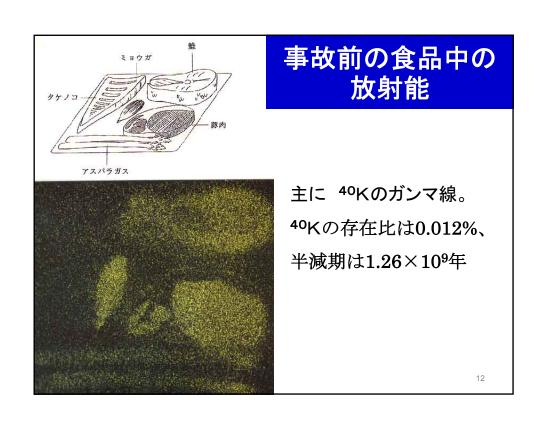
http://ja.wikipedia.org/

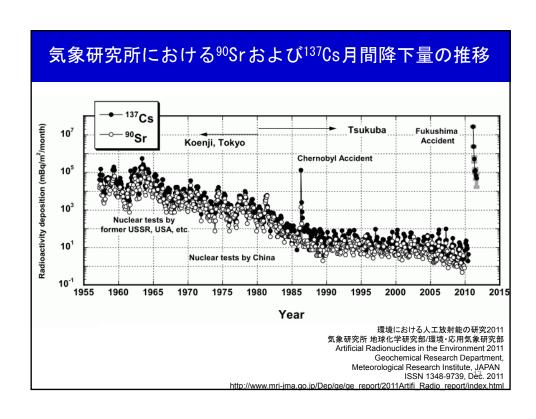
ベクレル(Bq)とシーベルト(Sv)

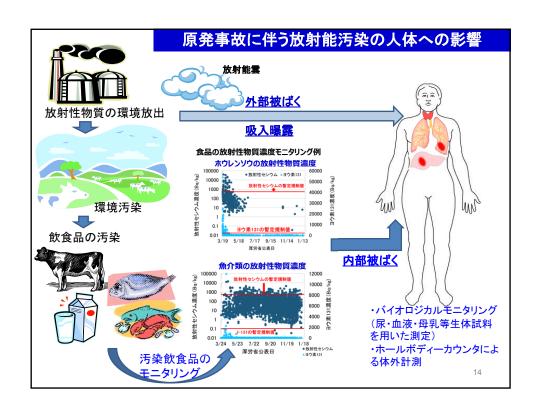
ベクレル (Bg)

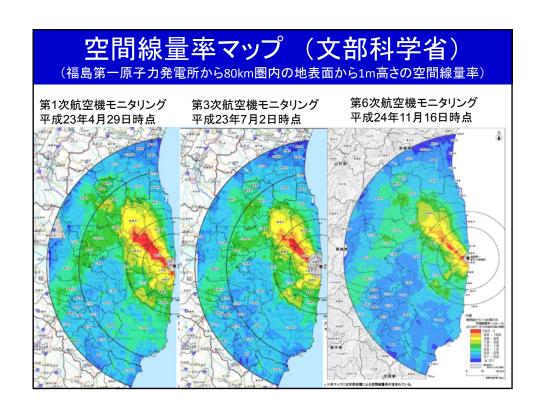

放射性物質の量を表す単位

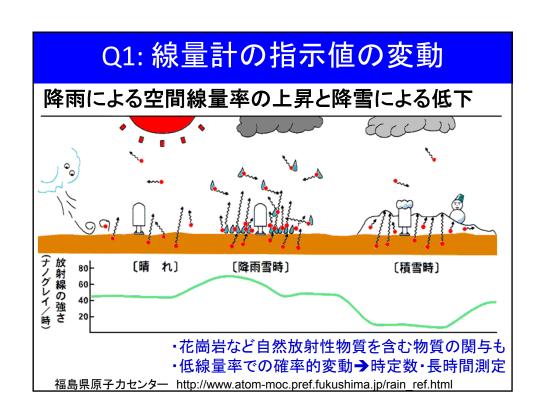

シーベルト (Sv)

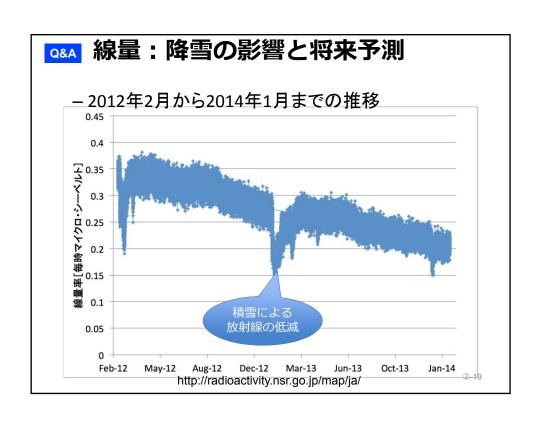

- ・放射線による人体への影響を表す
- ・人体に吸収されたエネルギーだけではなく、放射線の種類、組織による影響の違いを考慮
- 外部被ばくと内部被ばくを同じ尺度で評価するための単位

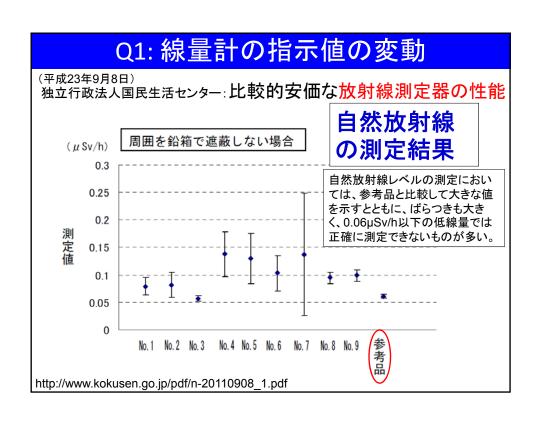

9

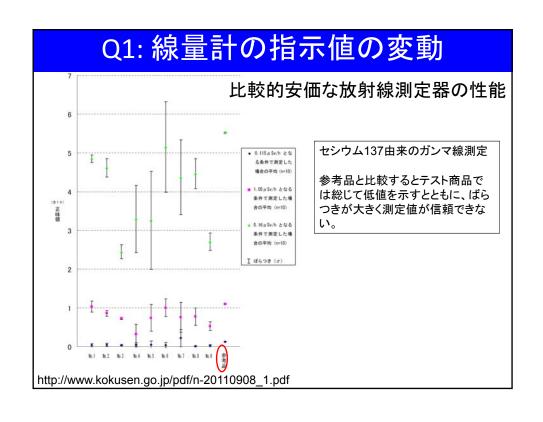

放射線の種類と透過力

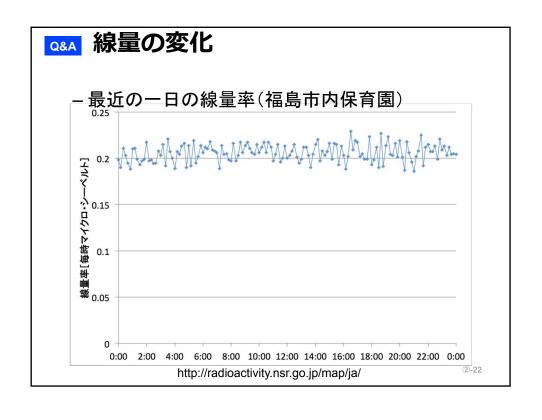







Q1: 線量計の指示値は変動する?


変動要因


- ・実際に変動している?
 - ・もともと確率的変動
 - •天候
 - 局所的な線量分布の相違
 - ・低線量率なら、なおのこと変動率 は大きくなる?
- ・測定器の問題?

Q2: 基準値を超えるものを食べ続けると健康に影響がでるか?

規制値の考え方と 飲食品モニタリングの実際

飲食物摂取制限に関する指標 (H24年、3月末まで)

原子力防災に関する原子力安全委員会の指針「原子力施設等の防災対策について」で策定 (チェルノブイリ 原発事故、JCO臨界事故の経験を踏まえ改定)

飲食物中の放射性物質が健康に悪影響を及ぼすか 否かを示す濃度基準ではなく、防護対策の一つとして の飲食物制限措置を導入する際の目安とする値 防護対策を導入すべきかどうかの判断基準:

実効線量 5 mSv/年(国際機関の考え方に基づく)

食品中に含まれる放射性物質の 食品健康影響評価の概要

- ・ 食品安全委員会による厚生労働省への答申(平成23 年10月27日)
- ・食品健康影響評価として、生涯における追加の累積 の実効線量でおおよそ100 mSv以上で健康影響の 可能性
- 100 mSv 未満については、現在の知見では健康影響の言及は困難
- ・ 小児の期間については、感受性が成人より高い可能 性(甲状腺がんや白血病)
- ⇒平成24年4月を目途に許容できる線量を年間1 mSvに 引き下げ(厚労省)

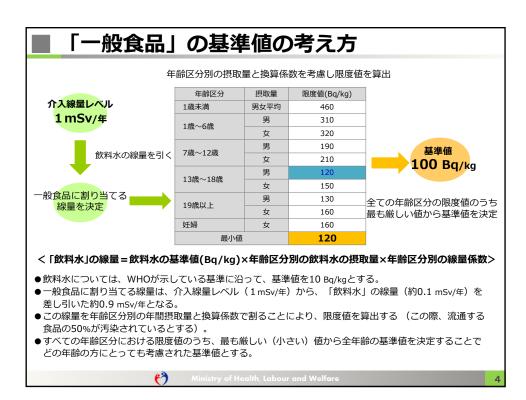
■平成24年4月1日以降の**食品の新たな基準値の設定について**

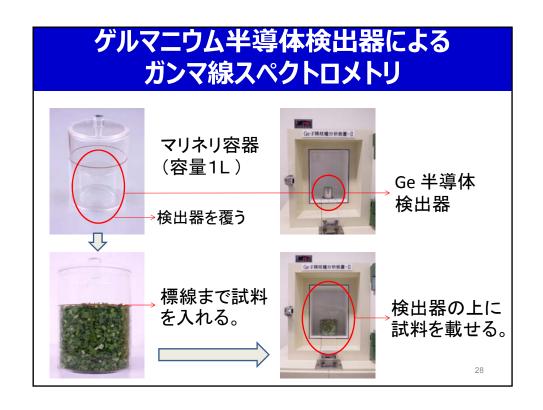
- 1. 見直しの考え方
- 現在の暫定規制値に適合している食品は、健康への影響はないと一般的に評価され、安全は確保されているが、より一層、食品の安全と安心を確保する観点から、現在の暫定規制値で許容している年間線量5ミリシーベルトから年間1ミリシーベルトに基づく基準値に引き下げる。
- 年間1ミリシーベルトとするのは、
 - ① 食品の国際規格を作成しているコーデックス委員会の現在の指標で、年間1ミリシーベルトを超えないように設定されていること
 - ② モニタリング検査の結果で、多くの食品からの検出濃度は、時間の経過とともに相当程度低下傾向にあること
- 特別な配慮が必要と考えられる「飲料水」、「乳児用食品」、「牛乳」は区分を設け、それ以外の食品を「一般食品」とし、全体で4区分とする。
- 2. 基準値の見直しの内容 (新基準値は平成24年4月施行予定。一部品目については経過措置を適用。)

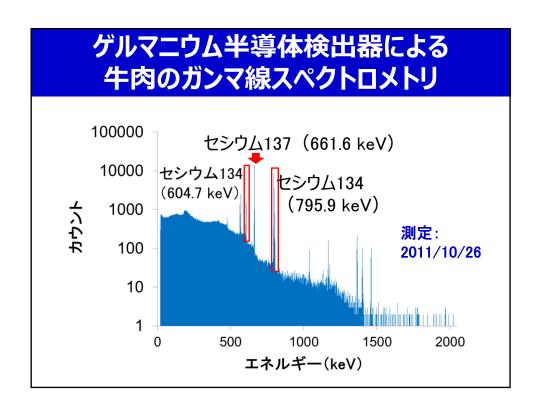
○放射性セシウムの暫定規制値※

)放射性センリムの暫定	規制個※1
食品群	規制値
飲料水	200
牛乳·乳製品	200
野菜類	
穀類	500
肉・卵・魚・その他	
牛乳·乳製品 野菜類 穀類	200

	基华他※2
食品群	基準値
飲料水	10
牛乳	50
一般食品	100
乳児用食品	50


(単位:ベクレル/kg)


※1 放射性ストロンチウムを含めて規制値を設定


※2 放射性ストロンチウム、プルトニウム等を含めて基準値を設定

Ministry of Health, Labour and Welfare

検査結果に関する情報

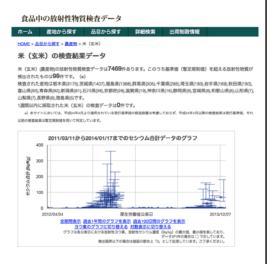
日報

- 検査結果の速報値
- ・厚生労働省HP ホーム>報道・広報>報道発表資料

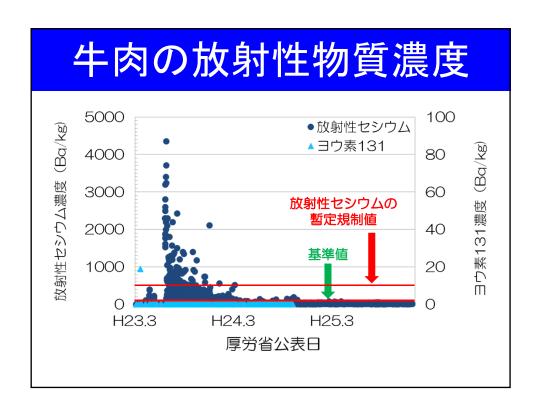
月報

- ・日報のデータを適宜修正し、月別にまとめたもの
- http://www.mhlw.go.jp/stf/houdou/2r9852000001m9tl,html

検査結果の検索サイト

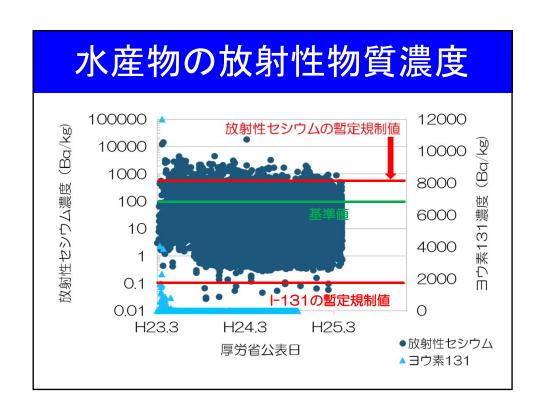

- ・産地別、品目別に検査結果を検索することが可能
- http://www.radioactivity-db.info

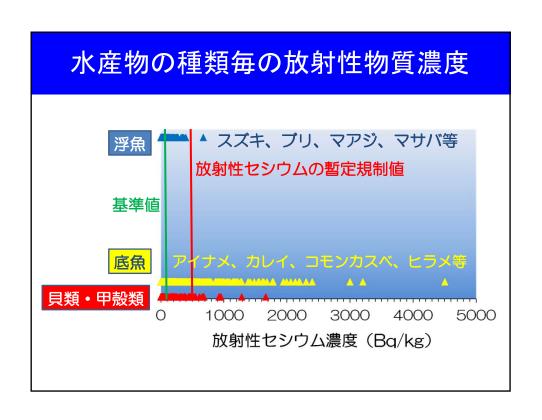
検査結果の検索サイト

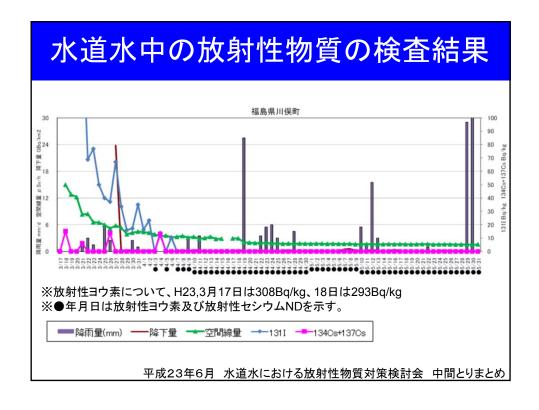

食品中の放射性物質の 検査データ

http://www.radioactivity-db.info

- ▶ 厚生労働省の委託により 国立保健医療科学院が運 営・管理
- 産地別・品目別の検索が 可能
- ▶ 検査結果をグラフで表示


飲食品の新規制値における検査結果の概要 食品群 検査件数 超過件数 事故後1年間の食品摂 取による被ばく= 農産物 89,351 909 (1.0%) 約0.1mSv 3.0 厚生労働省 薬事·食品衛生審議会 食品衛生分科会 放射性物質対策部会 畜産物 386,793 4 (0.001%) 2.5 宇宙線 年実効線量(mSv/年) 野生鳥獣肉 2,393 779 (32.6%) 2.0 大地放射線 水産物 大地放射線 39,393 1,304 (3.3%) 1.5 食物等 牛乳・乳児 9.061 (0%)0 1.0 食物等 用食品 ラドン等 13 (0.49%) 飲料水 2,667 0.5 (茶葉中来) ラドン等 その他 18,763 176 (0.94%) 日本 *H24.4.1以降採取分、H26年1月17日厚労省公表分までを集計




			E .	Application of	
	7-A- 8-4-1		. —————————————————————————————————————	7 ###	
ואווי וויי		生セシ		濃	
712 0 2				加亚	
				TILK I	

品目	検体数	検出件数	>100 (Bq/kg)	最大値 (Bq/kg)
牛肉	475,157	6,603	1,085	4,350
豚肉	2,194	66	7	270
鶏肉	1,089	5	0	12.2
野生鳥獣肉	3,075	2,608	1,178	61,000
鶏卯	1,398	1	0	11.4

*H26.1.17厚労省公表分までを集計

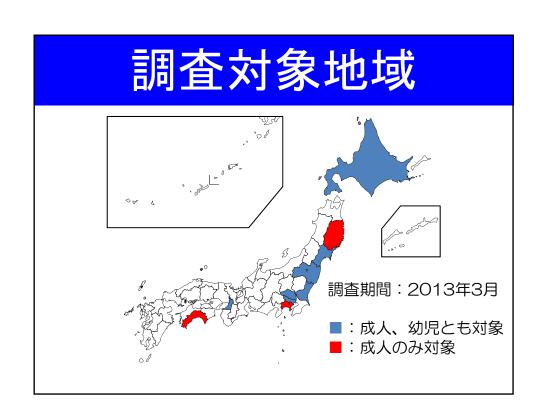
小まとめ

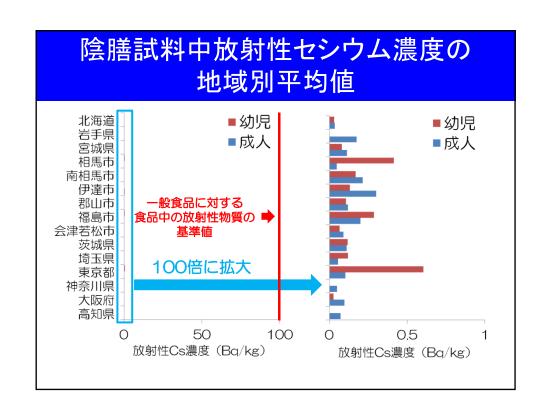
放射性セシウム濃度が特に高い食品

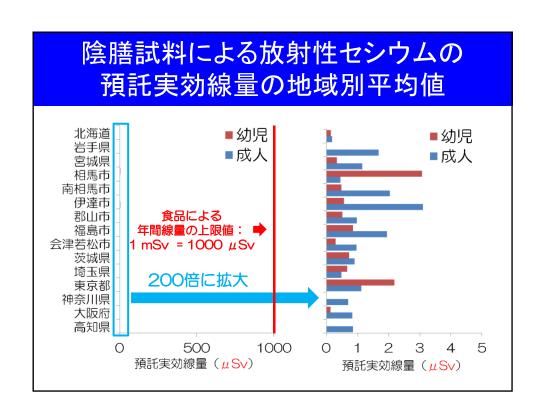
- ・キノコ、野生鳥獣肉、山菜類
- ・摂食量は少ないので、被ばく線量への寄与は限定的

放射性セシウム濃度が比較的高い食品

・ 魚介類 (特に底魚、淡水魚)

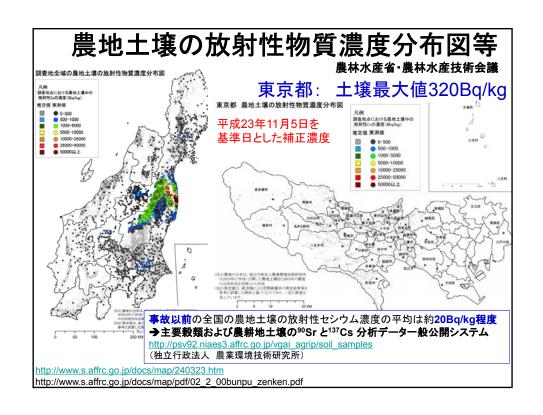

トータルダイエット研究による線量推計 ~陰膳方式による線量推計~

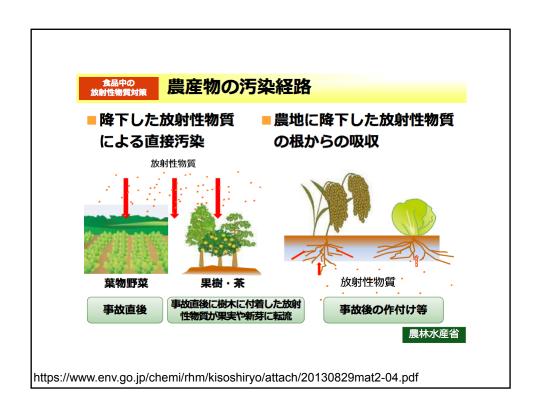

□放射性物質の1日摂取量(Bq/人・日)

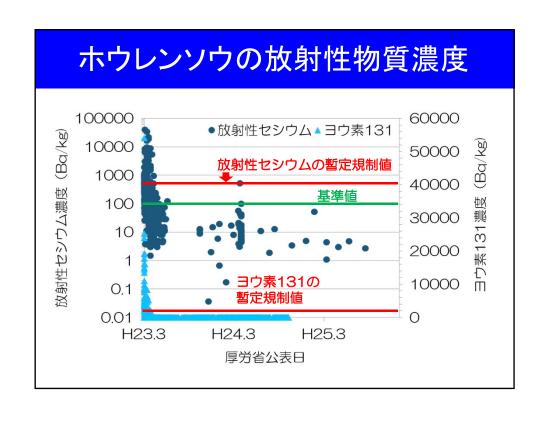

陰膳試料中の放射性物質濃度(Bq/kg) ×2日分の摂食量(kg)÷2日

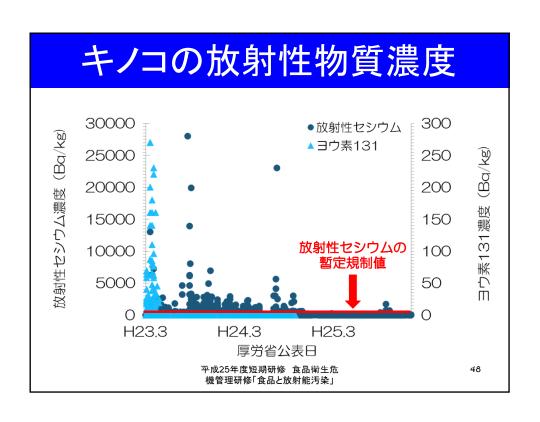

口当該試料を1年間摂取し続けた場合の 預託実効線量(Sv)

放射性物質の1日摂取量(Bg/人・日) ×線量係数(Sv/kg)×365日








Q3: 自家栽培での野菜の安全性

- ・土壌の汚染度は?
- ・土壌から、野菜への移行率は?

土壌から、野菜への移行係数は?

移行係数		平均	最大一最小
穀類	実	0. 02	0.0008-0.2
葉物野菜	葉	0. 074	0.0003-0.73
果物・ベリー類	果実	0. 033	0.0063-0.3
根菜	根	0. 03	0.001-0.16

IAEA Technical Reports Series No. 472

- X Bq/kg の土壌
- YBq/kg の作物がとれた
- → 移行係数=X ÷ Y

土壌改良:カリウム肥料の施肥など

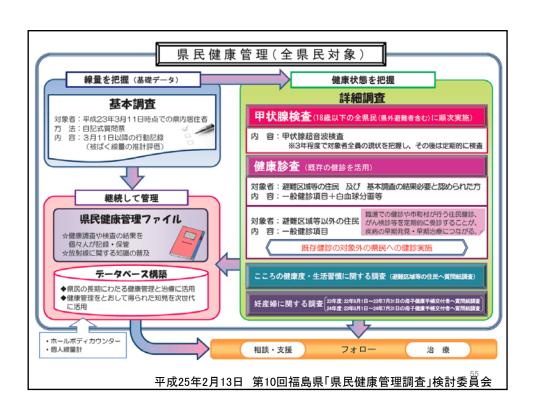
H23年の稲作:

玄米への移行係数を0.1、米の暫定規制値500Bq/kg →500÷0.1=5000Bq/kg の土壌を限度とした。

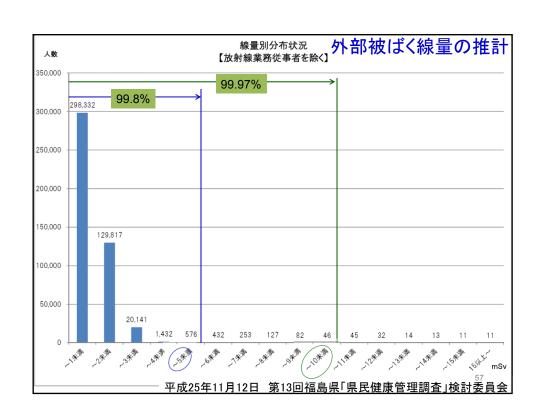
Q4:外遊びは大丈夫?

仮に土壌の放射性セシウムが¹³⁴Cs 1000Bq/kg, ¹³⁷Cs 2000Bq/kgとして (東京都の実測値、都健安研敷地内 ¹³⁴Cs 200Bq/kg, ¹³⁷Cs 450Bq/kg:H25,9,24)

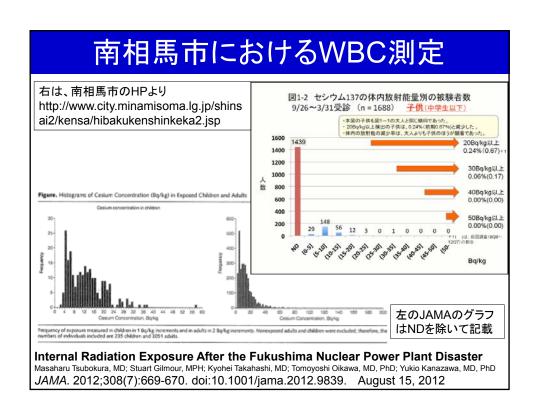
土壌を摂取することによる内部被ばく評価

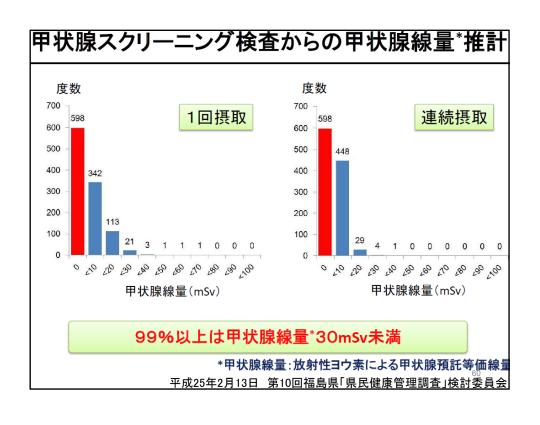

- 環境省:「土壌の直接摂取によるリスク評価等について」 (平成13年8月)
 - 1日当たりの土壌摂食量=子供 200mg/day
 - →摂取量は、2000Bq/kg x (0.2 x 0.001)kg =0.4Bq/day (¹³⁷Cs) 同様に0.2Bq/day (¹³⁴Cs)
- <u>5歳児</u>がセシウムを摂取の場合の実効線量係数9.6×10⁻⁶ (¹³⁷Cs)、1.3×10⁻⁵ (¹³⁴Cs) (mSv/Bq)
- → $0.4 \times 9.6 \times 10^{-6} + 0.2 \times 1.3 \times 10^{-5} = 0.000007 \text{ mSv}$
- →一年間継続したとして=0.003mSv

過大に評価しても、年間の自然放射線由来の線量である約 2mSv に比べると500分の1よりも小さいレベルです。


A4:外遊びは大丈夫?

- ・結論として、少し難しいですが、前述のように評価可能 で、その結果、リスクは小さいと考えられます。
- ・また、外部被ばく線量に比べ、懸念される内部被ばく 線量の寄与は少ないことがわかります。
- →そのため、通常のサーベイメータで測定可能な、外部被ばく線量を目安に、多くは評価されています。
- ・子供さんの自然とのふれあい、運動活動、グループでの遊び方、などの良い面とのバランスを考えましょう。
- ・対策としては、泥がついたときの通常の手洗い、インフルエンザなどの感染予防などのように、普段から衛生面で気を付ける対応で十分です。


被ばく線量評価 福島県「県民健康管理調査」検討委員会



外部被ばく総 【 全県調査		果 ·全県民調査	9 7	小部		く線 量別推言		推計	-	平成25	5年9月30)日現在
実効線量	全データ	放射線業務 従事者除く				左の内訳				放射線業	務從事者能	対線量別
(mSv)		従事者除く	県北	県中	県南	会津	南会津	相双	いわき		割合(%)	
~1未満	304,418	298,332	40,602	65,167	23,076	36,971	3,732	59,689	69,095	66.1	94.9	
~2未満	132,159	129,817	74,887	38,989	2,364	217	23	12,782	555	28.8	34.3	
~3未満	20,519	20,141	12,136	6,057	12	8	0	1,908	20	4.5	4.8	99.8
~4未満	1,508	1,432	439	290	0	1	0	699	3	0.3	4.0	
~5未満	618	576	44	6	0	0	0	524	2	0.1	0.2	
~6未満	488	432	25	2	0	0	0	405	0	0.1	0.2	
~7未満	288	253	8	0	0	0	0	245	0	0.1	0.1	
~8未満	163	127	1	0	0	0	0	126	0	0.0	0.1	0.2
~9未満	123	82	0	0	0	0	0	82	0	0.0	0.0	
~10未満	76	46	0	0	0	0	0	46	0	0.0	0.0	
~11未満	75	45	0	0	0	0	0	45	0	0.0	0.0	
~12未満	52	32	1	0	0	0	0	31	0	0.0	0.0	
~13未満	37	14	0	0	0	0	0	14	0	0.0	0.0	0.0
~14未満	35	13	0	0	0	0	0	13	0	0.0	0.0	
~15未満	32	11	0	0	0	0	0	11	0	0.0	0.0	
15以上~	296	11	0	0	0	0	0	11	0	0.0	0.0	0.0
#	460,887	451,364	128,143	110,511	25,452	37,197	3,755	76,631	69,675	100.0	100.0	100.0
最高值	66	25	11	5.9	2.6	3.6	1.6	25	4.8			
平均值	0.8	0.8	1.2	0.9	0.5	0.2	0.1	0.7	0.3			EG
		平月	龙25年	11月12	日 第	13回福	鳥県「	県民優	康管理	甲調查	」検討 委	員会

県民健康管理調査「甲状腺検査」の実施状況 _{単成25年9月30日現在(8月23日検査分まで輸界機定)}

	対象者数		者數(人))	結果判定數(人)						
	(人)		受診率	うち県外	判定率		判定区分別内訳(割合(%))			
			(%)	受診	(%)	, , , , , , , , , , , , , , , , , , ,	4		在対象者		
	7	1	(イ/ア)	~~	ウ (ウ/イ)	A1 エ (エ/ウ)	A2 オ (オ/ウ)	B カ (カ/ウ)	C + (+/ウ)		
平成23年度 実施市町村 計	47,766	41,493	(86.9)	1,923	41,339 (99.6)	26,187 (63.3)	14,936 (36.1)	216 (0.5)	0 (0.0)		
平成24年度 実施市町村 計	163,264	138,865	(85.1)	3,688	136,936 (98.6)	74,920 (54.7)	61,045 (44.6)	970 (0.7)	1 (0.0)		
平成25年度 実施市町村 計	78,930	58,427	(74.0)	0	47,262 (80.9)	20,418 (43.2)	26,472 (56.0)	372 (0.8)	0 (0.0)		
合計	289,960	238,785	(82.4)	5,611	225,537 (94.5)	121,525 (53.9)	102,453 (45.4)	1,558 (0.7)	1 (0.0)		

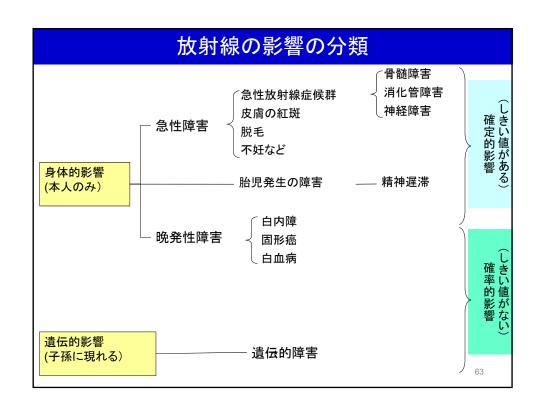
判定結果

A判定: (A1) 結節や嚢胞を認めなかったもの。 (A2) 5.0mm以下の結節や20.0mm以下の嚢胞を認めたもの。 B判定: 5.1mm以上の結節や20.1mm以上の嚢胞を認めたもの。

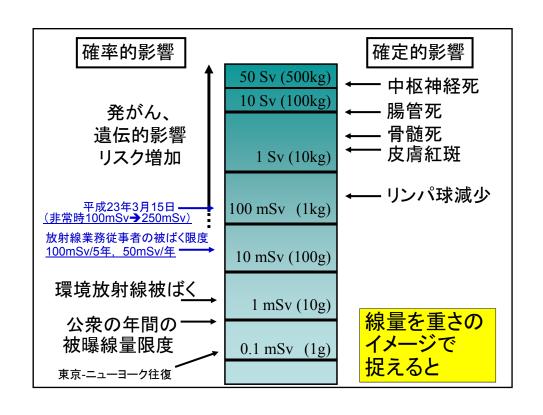
C判定:甲状腺の状態等から判断して、直ちに二次検査を要するもの。

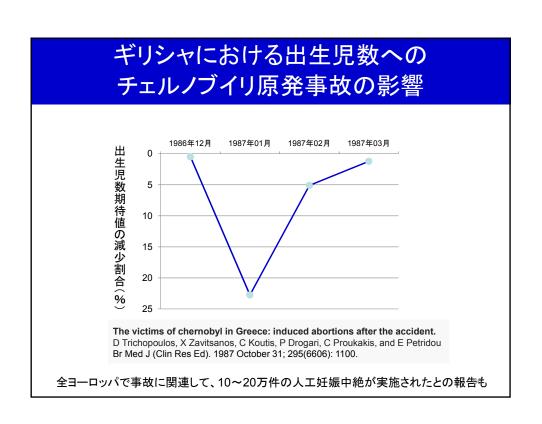
穿刺吸引細胞診等結果概要

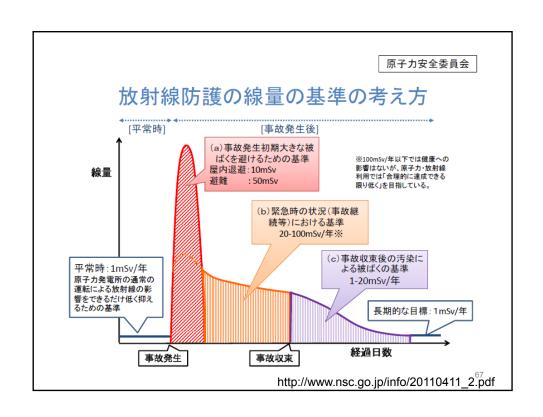
平成 23-25 年度合計


・悪性ないし悪性疑い 59 例 (手術 27 例:良性結節 1 例、乳頭癌 26 例)

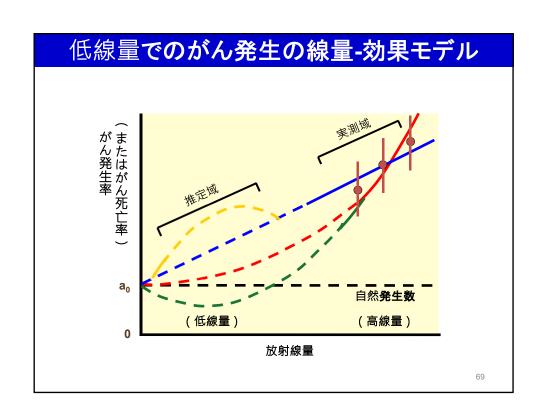
男性:女性 25 例:34 例

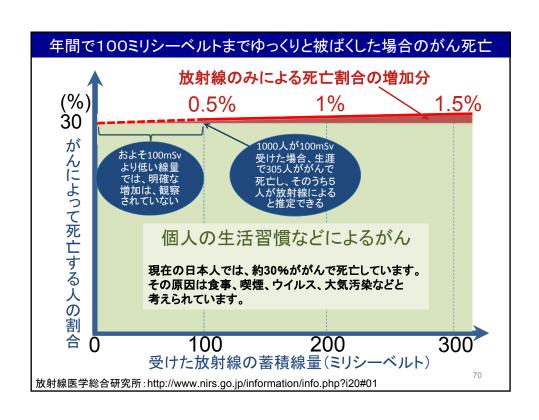

 平均年齢 16.8±2.6歳 (8-21歳、震災当時14.8±2.6歳6-18歳)

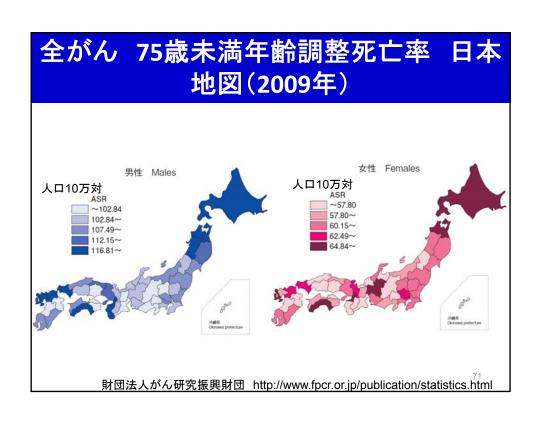

 平均腫瘍径 14.9±8.3 mm (5.2-40.5 mm)


放射線による健康影響と防護体系

	被ばく線	量と身体各部の状態
線量	臨床状態	解説
0~1 Sv	一般的に無症状	事故後3~5週間の白血球数は正常又は事故前レベルから わずかに抑制
1∼8 Sv	造血器症候群 (骨髄症候群)	主な前駆徴候・症状は、食欲不振、悪心、嘔吐であり、時に 皮膚紅斑、発熱、粘膜炎、下痢が認められる。25vを上回る 全身被ばく例の臨床検査を行うと、初期には顆粒球増多症、 事故後20~30日では明確な汎血球減少症が認められる。 造血器系の急性放射線症候群により生じる全身的な影響 には、免疫機能不全、感染性合併症の増加、出血傾向、敗 血症、貧血、創傷治癒障害などがある。
8 ~ 30 Sv	消化管症候群	早期から重度の悪心, 嘔吐, 水性下痢などの症状が生じ, 事故後数時間以内に認められる場合も多い。重症例では ショック, 腎不全, 心血管虚脱を生じる可能性もある。消化 管症候群による死亡は, 通常事故後8~14日で生じる。造 血器症候群を併発する。
>20 Sv	心血管·中枢神経 症候群	被ばく後数分以内の灼熱感,事故後1時間以内の悪心・嘔吐,疲憊,失調・錯乱の神経学的徴候などが認められる。死亡は不可避であり,通常24~48時間で死亡する。
		緊急被ばく医療ポケットブック; p57(一部改変







放射線によって誘発される健康影響の要約(ICRP Pub96)

線量	個人への影響	被ばくした集団に対する結果
極低線量:およそ 10mSv 以下(実効線 量)	急性影響なし。非常にわずかな がんリスクの増加	大きな被ばく集団でさえ、がん 罹患率の増加は見られない
低線量 :100mSv まで (実効線量)	急性影響なし。その後、1%未満 のがんリスク増加	被ばく集団が大きい場合 (恐らくおよそ10万人以上)、がん 罹患率の増加が見られる可能 性がある
中等度の線量 : 1000mSv まで(急性 全身線量)	吐き気、嘔吐の可能性、軽度の骨髄機能低下。その後、およそ10%のがんリスクの増加	被ばくグループが数百人以上の場合、がん罹患率の増加が 恐らく見られる
高線量 :1000mSv 以上(急性全身線量	吐き気が確実、骨髄症候群が現れることがある;およそ4000mSvの急性全身線量を超えると治療しなければ死亡リスクが高い。かなりのがんリスクの増加	

危険と安全の考え方の例 (リスク論) o

サスク 危険

- ゼロリスクはあり得ない
- リスクとベネフィットはトレードオフの関係
- ・リスクの管理にはコストがかかる。リスクとコストの間にもトレードオフの関係
- ・一つのリスクと他のリスクの間にもトレードオフの関係
- ・大気環境分野:「しきい値のない発がん物質について、現段階においては生涯 リスクレベル10⁻⁵を当面の目標」
- ・WHOの飲料水水質ガイドライン値:「発がん性に関連して遺伝子への悪影響があり、しきい値がないと考えられる物質の場合、生涯にわたる発がん性のリスクの増加分を10⁻⁵以下に抑える」 73

リスク認知:客観的リスクvs主観的リスクのずれ

リスクが実際より大きく見積もられる傾向があるできごと

- ・リスクの負担が不公平
- ・非自発的(自分からやろうとしたことではない)
- ・悪い影響の及ぶ範囲が広い
- ・一度に多くの被害者がでる(規模が大きい)
- ・次世代に影響を及ぼす
- •人為的
- ・新しいタイプ
- ・リスクがどうやって発現するかが見えにくい

そのずれは、未知なもの、子孫への影響が及ぶもの、負担が不 公平なものなどに、より顕著にあらわれます。

また**受動的なもの**に比べ、自ら選んだものの場合には1000倍も 大きいリスクを受け入れるとも言われます。

内閣府原子力安全委員会・安全目標専門部会「原子力は、どのくらい安全なら、十分なのか」平成14年7月