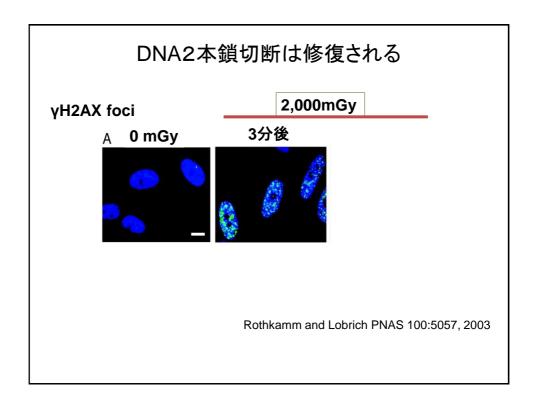
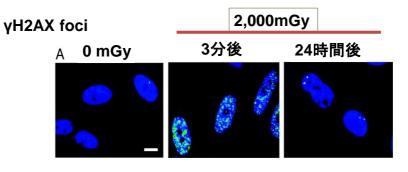
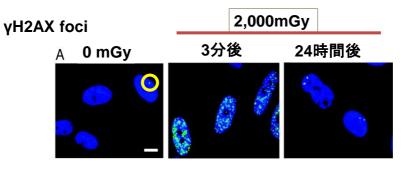

講演2「放射線による健康影響」


講師:公益財団法人環境科学技術研究所 理事長 島田義也氏


(国立研究開発法人量子科学研究開発機構 元理事 (兼)放射線医学総合研究所 元所長、

一般社団法人 日本放射線影響学会 理事長)

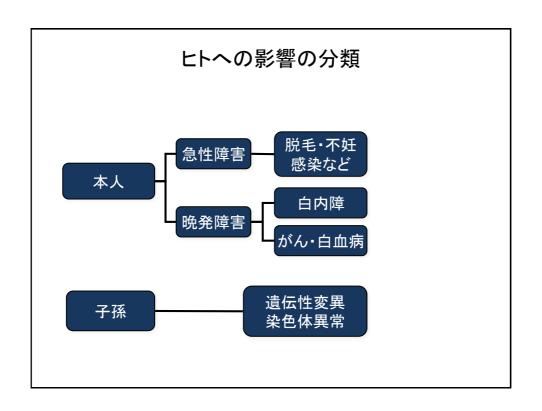


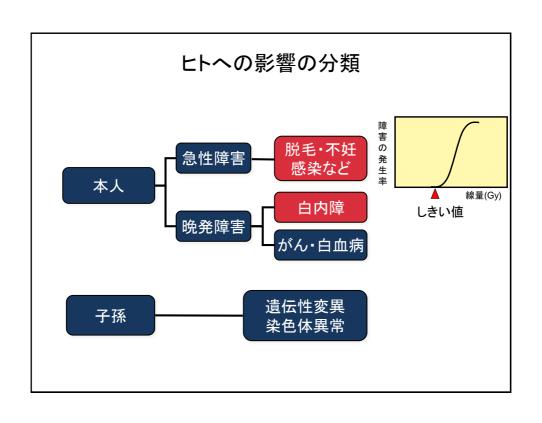

DNA2本鎖切断は修復される

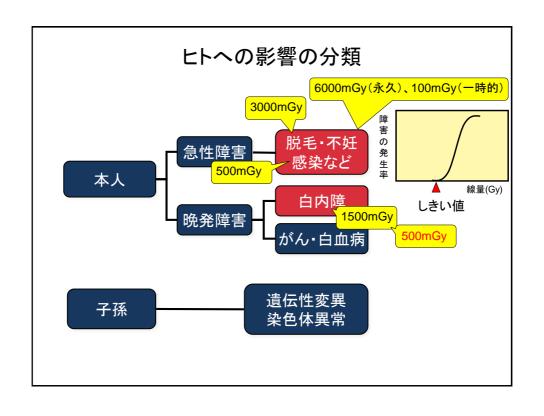
翌日には、切断はほとんど修復される。

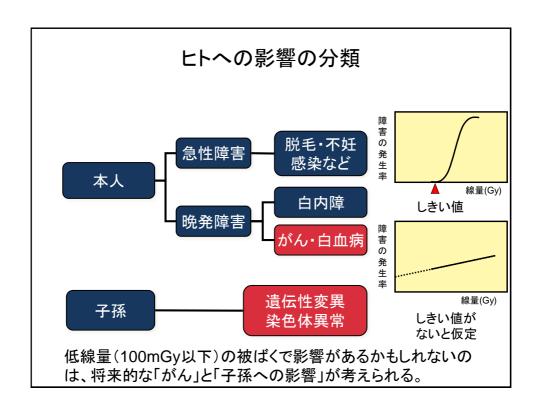
Rothkamm and Lobrich PNAS 100:5057, 2003

DNA2本鎖切断は修復される

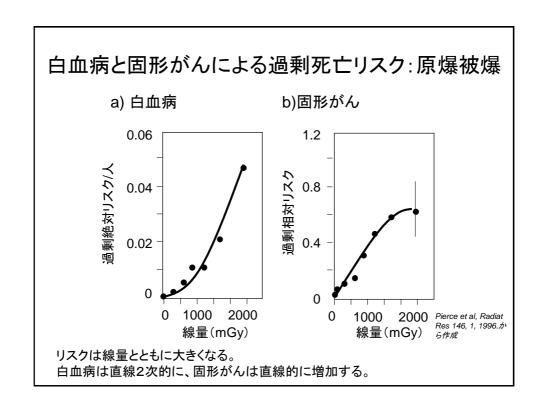

翌日には、切断はほとんど修復される。

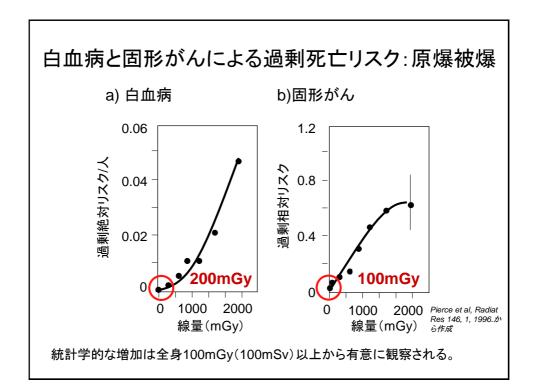

Rothkamm and Lobrich PNAS 100:5057, 2003


自然発生とX線によるのDNA損傷


損傷	自然発生 (/細胞/日)	放射線誘発 (/細胞/1000mGy)
塩基損傷	20,000	300
一本鎖切断	50,000	1000
二本鎖切断	10	20-40

被ばくがなくてもDNAは切れている(活性酸素、細胞分裂)。

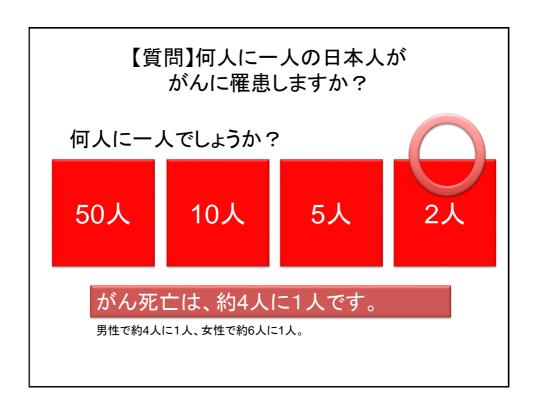


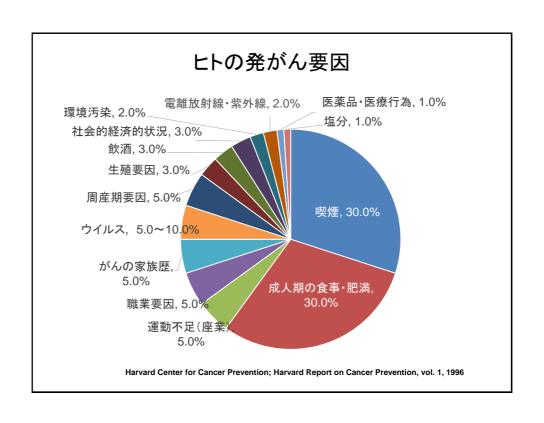

ポイント1

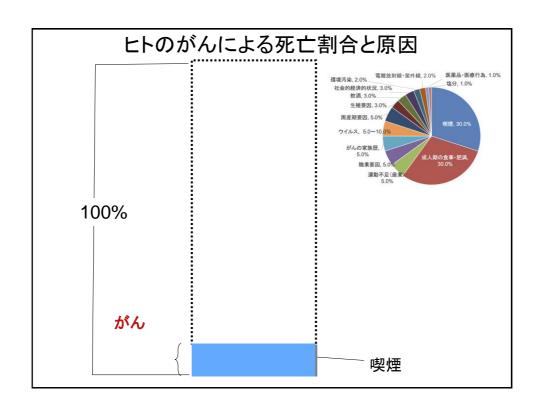
- 放射線は、線量に応じて、からだの設計図である遺伝子をつくっているDNAを切断する。
- 細胞は、切断されたDNAをもとに戻す力を 持っている(DNA修復)。
- でも、間違って修復することもある。
- 低線量放射線のリスクは、「がん」と「遺伝 影響」が考えられる。

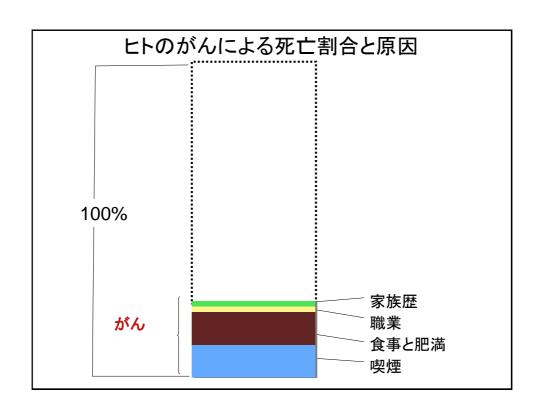
広島、長崎(原爆被爆)

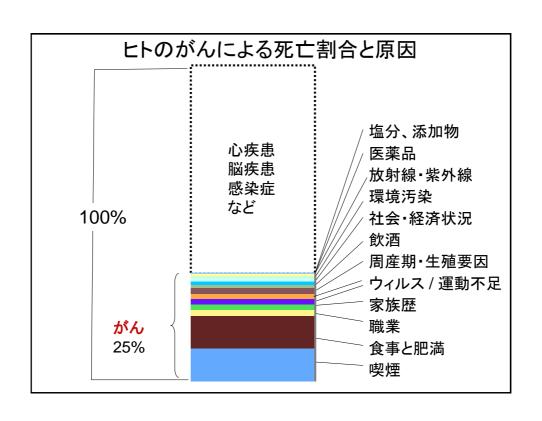
広島、長崎で原爆被ばくされた方の疫学調査の結果から、 放射線被ばくと発がんリスクの関係を見てみよう。

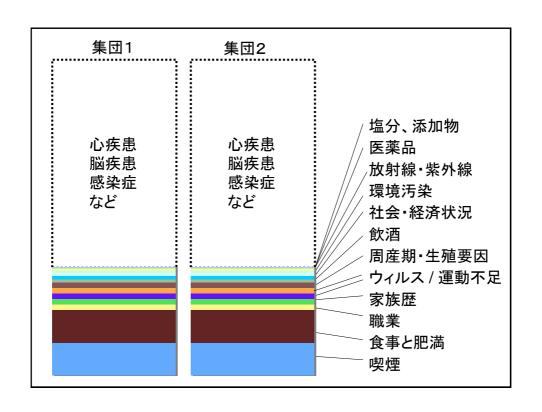

放射線防護における発がんリスク

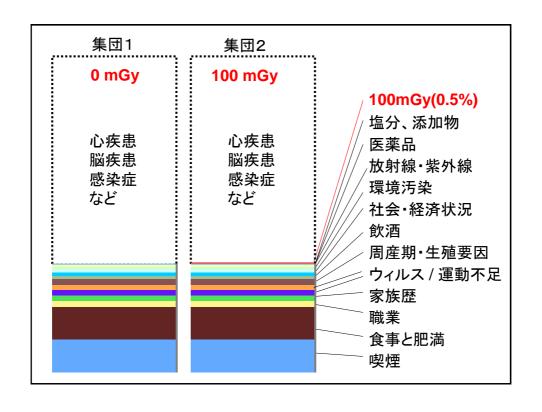

- ・放射線による発がんリスクは、全身100mGy (100mSv)以上の被ばく線量で観察され、それ以 下では、リスクの明らかな増加を証明することは難 しくなります。
- ・ 国際放射線防護委員会(ICRP)(国際原子力機関 (IAEA)、世界保健機構(WHO))では、全身100mGy あたり、生涯のがん死亡リスクが、約0.5%(急性被 ばくは約1.0%)増加すると仮定して、規制を検討しています。


100mGyによるがんリスクの 増加について


「100mGyあたり、生涯のがん死亡リスクが、約0.5%増加する」とはどのくらいのリスクの大きさなのか?


絵に描いて、見てみよう。





放射線と他の発がん要因のリスク

放射線 1000~2000mSv 喫煙者 大量飲酒(450g以上/週)

放射線 200~500mSv 肥満(BMI≧30) 運動不足

放射線 100~200mSv 野菜不足 受動喫煙(非喫煙女性)

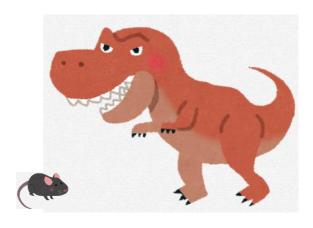
国立がん研究センターHPより作成。

日本人の自然からの生涯被ばく線量

自然放射線

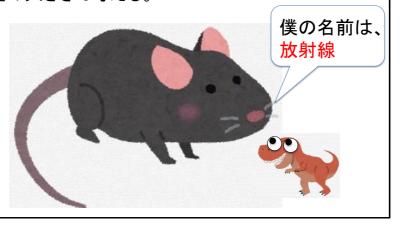
ミリシーベルト/年	***			
	宇宙から	大地から	ラドンなどの 吸入	食物から
2.4(世界)	0.39	0.48	1.26	0.29
2.1 (日本)	0.30	0.33	0.48	0.99

出典:日本原子力文化財団「原子力総合パンフレット2019」


1年間で**2.1mSvの被ばく**なので、人生50年の間に 約**100mSv**の自然の放射線を被ばくする。

ポイント2

- 低線量放射線(100mGy)の影響は、主に がんを考える。
- 100mGyの被ばくのがんリスクの増加は、 原爆被ばく者でも、統計学的に明らかにで きないほど小さい(規制当局は0.5%増加と 仮定)。

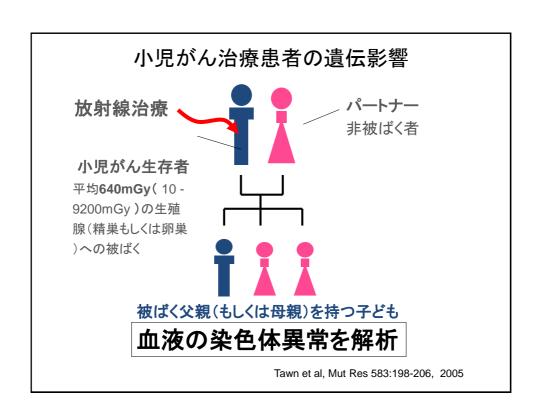

大きさを理解する

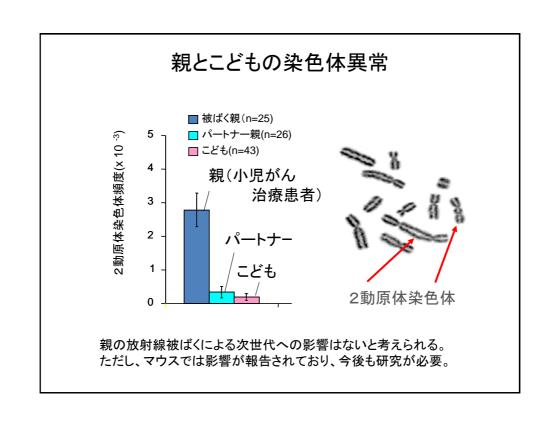
大きいものを大きく、小さなものを小さく感じる センスを磨く。

大きさを理解する

- 大きいものを大きく、小さなものを小さく感じる センスを磨く。
- 線量の大きさで考える。

ポイント3


大きいものを大きく、小さなものを小さく感じる センスを磨く。


遺伝性影響 小児がん治療患者

原爆被爆者においては、次世代への影響は観察されていない。

放射線被ばくの子孫への影響はないのだろうか?

小児がんで放射線治療を行ったがん患者さんの 調査データを見ていこう。

ポイント4

人では、親の被ばくによるこどもへの影響は、観察されていない。

被ばくのリスクは蓄積するのか?

少ない線量を何度も被ばくした場合

肺結核治療とX線透視

結核治療コホート (人工気胸法) Massachusetts

ー回あたりの線量(透視)が10mGy程度。 月に2-3回の被ばく。

肺結核治療とX線透視

結核治療コホート (人工気胸法) Massachusetts

	肺がん	乳がん
被ばく群の人数	6,285	
対照群の人数	7,100	
透視の回数 (平均)	77	
線量 (平均, Gy)	840mGy	
標準死亡比(SMR)	0.8	
	(0.6 - 1.0)	

Davis et al, Cancer Res 49:6130, 1989

反復被ばくによるがんリスクの増加は、肺がんでは観察されない。

肺結核治療とX線透視

結核治療コホート (人工気胸法) Massachusetts

	肺がん	乳がん
被ばく群の人数	6,285	3,329
対照群の人数	7,100	3,184
透視の回数 (平均)	77	88
線量 (平均, Gy)	840mGy	750mGy
標準死亡比(SMR)	8.0	1.4
	(0.6 - 1.0)	

Davis et al, Cancer Res 49:6130, 1989

反復被ばくによるがんリスクの増加は、肺がんでは観察されないが、平均750mGy程度の被ばくの場合、乳がんで観察される。

乳がんリスクと被ばく時年齢の関係

	初回被ばく時あるいは診断時年齢						
	0-14	15-19	20-24	25-29	30-39	40+	合計
被ばく群の 観察症例数	6	39	47	29	16	5	142
相対リスク	1.64	2.26*	1.72*	1.24*	0.76*	0.94	1.44*

*p<0.05

Boice et al, Radiat Res 125:214-222, 1991

被ばくの年齢が高くなるほど、乳がんリスクは小さくなる。

カナダの透視患者の調査 乳がん

	50mGy/回	2mGy/回
過剰相対リスク/Gy	1.94	0.25

1回あたりの線量が低いほどリスクは小さくなる。

ポイント5

- 一般に、反復被ばくやじわじわ(低線量率) 被ばくのリスクは、瞬時の被ばくのリスクよ り小さい。
- ・ 被ばくの影響や蓄積の程度は、臓器や年齢、一回当たりの線量によって異なる。

放射線による健康影響 まとめ

- 放射線の影響はDNA切断から。しかし細胞には切れたDNAを修復する能力がある。
- 発がんリスクは線量と臓器、年齢に依存する。
- その他の発がん要因と放射線のリスクの大きさの比較。
- 遺伝性リスクは人では観察されていない。
- 繰り返し被ばくのリスクは瞬時の被ばくのリスクより小さい。